
Behavioural changes in aposematic Heliconius melpomene butterflies in response to 

their predatory bird calls

Sushant Potdar1, Madhuri Dinakar2, Erica L. Westerman1

1Department of Biological Sciences, University of Arkansas, Fayetteville AR

2KB Group of NY, Inc. dba PRIME AE Group of NY, Albany NY

Running  title:  Behavioural  change  in  response  to  predatory  bird  calls  in  Heliconius 

melpomene butterfly

ORCID 

Sushant Potdar: 0000-0002-6924-4826

Madhuri Dinakar: 0000-0002-9713-6320

Erica L. Westerman: 0000-0002-3575-8298

1

1

2

3

4

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2023. ; https://doi.org/10.1101/2023.10.24.563859doi: bioRxiv preprint 



Abstract:

Prey-predator interactions have resulted in the evolution of many anti-predatory traits. 

One of them is the ability for prey to listen to predators and avoid them. Although prey 

anti-predatory behavioural responses to predator auditory cues are well described in a 

wide range of taxa, studies on whether butterflies change their behaviours in response to 

their  predatory  calls  are  lacking.  Heliconius  butterflies  are  unpalatable  and  form 

Müllerian mimicry rings as morphological defence strategies against their bird predators. 

Like many other butterflies in the  Nymphalidae  family,  Heliconius  butterflies possess 

auditory organs, which are hypothesized to have evolved to assist with predator detection. 

Here we test whether Heliconius melpomene change their behaviour in response to their 

predatory  bird  calls  by  observing  the  behaviour  of  male  and  female  H.  m.  plessini 

exposed to calls of Heliconius avian predators: rufous-tailed jacamar, migratory Eastern 

kingbird, and resident tropical kingbird. We also exposed them to the calls of the toco 

toucan, a frugivorous bird as a control bird call, and an amplified greenhouse background 

noise as a noise control. We found that individuals changed their behaviour in response to 

jacamar calls only. Males increased their walking and fluttering behaviour, while females 

did  not  change  their  behaviour  during  the  playback  of  the  jacamar  call.  Intersexual 

behaviours like courtship, copulation, and abdomen lifting did not change in response to 

bird  calls.  Our  findings  suggest  that  despite  having  primary  predatory  defences  like 

toxicity and being in a mimicry ring, H. m. plessini butterflies changed their behaviour in 

response to predator calls. Furthermore, this response was predator specific, as  H. m. 
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plesseni did not respond to either the Eastern kingbird or the tropic kingbird calls. This  

suggests  that  Heliconius butterflies  may  be  able  to  differentiate  predatory  calls,  and 

potentially the birds associated with those calls.  

Key  words:  auditory  cues,  Lepidoptera,  aposematism,  toxic,  neotropics,  bird 

vocalizations

Highlights:

1. Many prey animals change their behaviour in response to their predator’s calls.

2. Whether butterflies alter behaviour in response to bird predator calls is unknown.

3. We show that Heliconius melpomene change behaviour in response to jacamar calls.

4. Males increased walking and fluttering, but did not alter courting behaviour.

5. H. melpomene did not respond to predatory Eastern kingbird or tropical kingbird calls.

Introduction:

Predation is a ubiquitous interspecific interaction in almost all ecosystems and can 

be a strong evolutionary force for the emergence and selection of prey anti-predatory 

strategies that increase survival  (Lind & Cresswell, 2005). Anti-predatory strategies are 

widespread in prey animals and can be morphological  or  behavioural.  Morphological 

strategies include aposematism, chemical toxicity, and crypsis (Rojas et al., 2019; Vallin 

et  al.,  2006),  while behavioural  anti-predatory  strategies  include  active  evasion  of 
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predatory attacks, and behaviours that decrease detection (Palmer & Packer, 2021). Anti-

predatory strategies can also be a combination of both morphological and behavioural 

strategies  such  as  the  deimatic  displays  in  mountain  katydid Acripeza  reticulata  and 

swallowtail butterflies (Olofsson et al., 2012; Umbers & Mappes, 2015). 

The most common anti-predatory strategies are behavioural responses to detection 

and active attacks by predators. These behavioural responses help prey escape predation, 

either in the absence of morphological defences, or as a combination with morphological 

defences, and can be highly variable across species, within species, and between sexes 

(Apfelbach et al., 2005; Lind & Cresswell, 2005). Some species, such as desert isopods 

(Hemilepistus  reaumuri),  freeze  and  retreat  inside  their  burrows  upon  smelling  their 

predator’s  scent  (Zaguri  &  Hawlena,  2020);  while  others,  such  as  male  tree  lizards 

(Urosaurus ornatus) actively escape by fleeing after detecting their predators (Thaker et 

al.,  2009).  Anti-predatory  behaviours  can  also  differ  within  species  in  response  to 

different predators, as illustrated by red squirrels (Tamiasciurus hudsonicus), which have 

different alarm calls for avian predators and ground predators (Greene & Meagher, 1998). 

Anti-predatory behavioural responses can also be sex-specific, either due to the inherent 

sex-specific differences in physiology and behaviour, or due to the increased vulnerability 

of predation during intraspecific sexual behaviours  (Curlis et al., 2016; Edomwande & 

Barbosa,  2020;  Lea  &  Blumstein,  2011;  Sitvarin  &  Rypstra,  2012;  Wormington  & 

Juliano, 2014). Both males and females are known to alter their courtship and mating 

behaviours under predation risk (Acharya & McNeil, 1998; Torsekar et al., 2019). In wolf 
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spider (Schizocosa ocreata), males cease courtship behaviour after detecting predatory 

birds’ calls and take longer to return to courting compared to non-threatening control 

sounds  (Lohrey  et  al.,  2009),  while  female  túngara  frogs  (Physalaemus  pustulosus) 

approach calling males more cautiously when exposed to bat wingbeat sounds (Bernal et 

al., 2007). The cost of predation during intraspecific sexual behaviours such as courtship 

and copulation is high, forcing individuals to switch from sexually oriented behaviours to 

survival behaviours.

Detecting  and  recognizing  predatory  cues  are  necessary  for  active  predator 

avoidance  behaviours,  and  these  cues  can  either  be  visual,  chemical,  vibrational,  or 

auditory. Auditory cues play a vital role in predator avoidance by prey animals, from 

invertebrates (Faure & Hoy, 2000; Jacobs et al., 2008; Lohrey et al., 2009; Prakash et al., 

2021; Rosen et  al.,  2009; Triblehorn et  al.,  2008) to vertebrates  (Bernal et  al.,  2007; 

Cantwell & Forrest, 2013; Deecke et al., 2002). In Lepidoptera (moths and butterflies), 

anti-predatory behaviours  in  moths to  predators’ auditory cues have been extensively 

studied  under  various  ecological  contexts.  Moths  have  evolved hearing  to  detect  bat 

echolocation  calls  and  avoid  bat  predation  by  performing  aerial  manoeuvrers and 

jamming echolocation calls  (Conner & Corcoran, 2012). Both male and female moths 

also  reduce  sexual  activity  under  bat  predation  pressure  (Acharya  & McNeil,  1998; 

Edomwande & Barbosa, 2020). 

While moths are particularly well known for their hearing ability and anti-predator 

behaviours, butterflies, their day-flying relatives, are also known to have auditory organs, 
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which may be sensitive to predator sounds (Lane et al., 2008). In particular, many species 

in  the  family  Nymphalidae  possess  auditory  organs  on their  wings, such as  the  blue 

morpho  Morpho peleides  (Lane et al., 2008; Lucas et al., 2009; Mikhail et al., 2018), 

common wood nymph  Cercyonis  pegala  (Sun et  al.,  2018),  the owl butterfly  Caligo 

eurilochus (Lucas et al.,  2014),  butterflies from the genus  Erebia (Ribarič & Gogala, 

1996), and Heliconius butterflies (Swihart, 1967). However, unlike moths, it is generally 

unknown  whether  butterflies  that  possess  auditory  organs  change  their  behaviour  in 

response to their  predator’s vocalizations.  In this study,  we used a butterfly from the 

genus Heliconius to test whether these butterflies change their behaviour in response to 

their predator’s vocalizations. 

Heliconius  butterflies (Family  Nymphalidae), found in North, Central, and South 

America, are toxic, unpalatable, display aposematic colouration, form Müllerian mimicry 

rings, and roost communally to avoid bird and bat predation (Engler-Chaouat & Gilbert, 

2007; Finkbeiner et al., 2012; Mallet & Gilbert, 1995; Pinheiro De Castro et al., 2019). 

Despite these anti-predatory strategies, Heliconius butterflies are vulnerable to predation 

by specialist  bird predators,  as  well  as  by naïve generalist  predatory birds;  and their 

mortality is higher when young birds are learning which butterfly species are toxic and 

should be avoided (Chai, 1986; Langham, 2004, 2006; Pinheiro, 1996; Pinheiro & Cintra, 

2017). Hence, it may be evolutionarily advantageous for Heliconius butterflies to detect 

the presence of  their  bird predators  and change their  behaviours  to  reduce detection, 

despite  having  multiple  anti-predatory  strategies.  One  possible  way  these  butterflies 
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could detect  the presence of  their  bird predators is  by  using avian vocalization cues, 

which are often species specific (Lane et al., 2008; Lucas et al., 2009; Mikhail et al., 

2018). In Heliconius butterflies, hearing organs located at the base of the hindwing with 

peak sensitivity between 0.5 to 4 KHz at 70-90 dB pressure have been described (Swihart 

1967).  However,  the  hypothesis  that  Heliconius  butterflies  change  their  behaviour  in 

response to their predatory birds’ vocalizations has never been tested.   

In this study, we tested whether Heliconius melpomene plessini butterflies change 

their behaviour in response to the vocalizations of their known bird predators. We first  

tested butterfly response to the vocalizations of two predatory birds with disparate calls 

as  well  as  the  vocalization  of  a  frugivorous  bird,  to  assess  whether  H.  m.  plesseni 

butterflies  respond to both predator  bird calls  and calls  of  non-predatory birds.  After 

answering  that  question,  we then  tested  the  response  of  H. m.  plessini  butterflies  to 

predators that differ in annual patterns of predation (year-round resident or migratory), to 

assess whether strength of  H. m. plesseni response is associated with degree of annual 

avian  predator  exposure.  During  both  these  experiments,  we  also  tested  whether 

intraspecific  sexual  behaviours  like  male  courtship  and  female  acceptance/rejection 

behaviours changed in response to H. m. plessini’s bird predatory calls.  

Materials and Methods

Study species husbandry 
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Heliconius  melpomene (Order:  Lepidoptera,  Family:  Nymphalidae),  is  native  to 

Central and South America. The subspecies  H. m. plessini is found in the mountainous 

forests of Ecuador and Peru in South America (Hines et al., 2011). Live pupae of H. m. 

plessini were  shipped  from Ecodecision  Heliconius  Works  in  Quito,  Ecuador  to  the 

University of Arkansas Biology greenhouse facility in Fayetteville AR, USA, where they 

were maintained at an average temperature of 27°C, average relative humidity of 70% 

and a 13:11 hour L:D cycle, to mimic summer tropical conditions. All pupae were hung 

and housed in mesh BioQuip cages (34.29 x 34.29 x 60.96 cm, Rancho Dominguez, CA, 

U.S.A.) until their eclosion in the greenhouse facility. Newly eclosed individuals were 

sexed  and  tagged  with  a  unique  number  with  a  silver  metallic  permanent  marker 

(SHARPIE 39108PP) and placed in sex-specific mesh BioQuip cages (60.96 x 60.96 x 

142.24 cm) with  ad libitum  BIRDS choice butterfly nectar (Birdschoice, Chilton, WI, 

USA) and pollen from Lantana spp flowers. Marking butterflies with a marker does not 

have long term effects on their behaviour and lifespan (Gall, 1984). Female H. m. plessini 

were housed with females of two other subspecies, H. m. malleti and H. m. rosina while 

male  H. m. plessini were housed on their own. Both the male and female cages were 

visually isolated from the opposite sex and had no more than 15 individuals in each sex 

specific cage at any point in time. 

Bird calls and control treatments
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We used  the  calls  of  four  different  bird  species  during  our  experiments:  three 

Heliconius predators and one frugivore as a control species. Our predatory bird species 

were  the  rufous-tailed  jacamar  (Galbula  ruficauda),  Eastern  kingbird  (Tyrannus 

tyrannus),  and  tropical  kingbird  (Tyrannus  melancholicus)  (Pinheiro,  1996,  2011; 

Pinheiro & Cintra, 2017). We used the non-predatory toco toucan (Ramphastos toco) call 

to  test  if  H.  m.  plessini respond  to  bird  calls  in  general,  and  amplified  greenhouse 

background noise as a random noise control. We chose toco toucan as our control bird 

call because it is a non-predatory frugivorous bird found in the same habitat as our focal 

butterflies  and  has  a  naturally  loud  call.  Playback  recordings  of  the  four  bird  calls  

(rufous-tailed jacamar, Eastern kingbird, tropical kingbird and toco toucan) with minimal 

disturbance from background animals were downloaded from Xeno-Canto (Xeno-Canto 

Foundation; www.xeno-canto.org) (for sonograms of all calls see Supplementary Figure 

2). These bird calls were characterized as ‘songs’ in the original files uploaded on Xeno-

Canto. All the bird calls contain elements within previously reported Heliconius hearing 

frequency 1-4 KHz (Swihart, 1967), though the main components of the kingbird calls’ 

are just outside that range at 5 KHz (Supplementary Figure 2).

The University of  Arkansas butterfly facility has constant  and continuous noise 

generated by fans and misters which were measured at 65 dB near the behavioural watch 

cage using an android sound meter application (Sound Meter-Decibel and noise Meter). 

To account for any butterfly behavioural responses to this background noise, or to loud 

noises in general, we recorded the greenhouse noise using the android voice recorder 
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application (Voice Recorder,  version 3 (42.0))  and used this recording in behavioural 

assays as a greenhouse background noise control. During the behavioural assays, the calls 

of rufous-tailed jacamar (76 dB), Eastern kingbird (79 dB), tropical kingbird (80 dB), 

toco toucan (80 dB) and the greenhouse background noise control (77 dB) were played at 

10-15 dB louder than the actual greenhouse background noise. Bird calls in forests are  

always against a naturally generated background noise (by other animals; leaves rustling, 

waterfalls, and streams). While our constant greenhouse background noise is admittedly 

different from that of a forest, the presence of background noise broadly emulates such 

sounds generated in the forest. All calls were standardized to one minute long .mp3 files. 

  

Behavioural Assays

All behavioural assays were conducted between 11:00 AM and 2:00 PM, when H. 

melpomene  are  most  active  in  our  greenhouse  (Rather  et  al.,  2022).  We  conducted 

behavioural assays using 3-15-day-old males and females in a large behavioural cage 

(60.96 x 60.96 x 142.24 cm).  In each assay,  we used one male and one female and 

acclimated them in the behavioural cage for 15 minutes with a JBL® Flip 4 portable blue-

tooth speaker (Harman) and a Lantana spp. plant. We used both a male and a female in 

our  behavioural  assay  to  determine  whether  predatory  bird  calls  had  an  effect  on 

intersexual  behaviours  (courtship,  abdomen  lifting,  copulation  and,  sitting  near)  in 

addition to any other types of behaviour (wing fluttering, antennae wiggling,  basking, 

flying,  resting,  walking).  After  a  15-minute  acclimation  period,  we  recorded  all  the 
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behaviours performed by the two individuals in the assay for 15 minutes prior to any 

playback calls. We then played one of the bird calls or the control greenhouse background 

noise using a JBL® Flip 4 portable blue-tooth speaker from the observer’s phone (Google 

Pixel), placed inside the behavioural cage for 1 minute and recorded the behaviours of the 

two individuals during the playback of the call/background noise. After the playback, we 

recorded  the  behaviours  of  the  two  individuals  for  an  additional  14  minutes 

(Supplementary Figure 1). We recorded the frequency of  fluttering  and antenna wiggle 

behaviours and the frequency and duration of basking, flying, resting, walking, courtship, 

copulation, abdomen lifting, and sitting near each other behaviours throughout the entire 

30-minute observational period. 

We defined behaviours for H. m. plessini as follows: fluttering- opening and closing 

of wings either while resting or walking; antenna wiggle- movement of antennae at 45° 

angle in any direction  (Robertson et al., 2020);  basking- individuals sitting with wings 

partially or fully open; flying- movement from one point to another in the air using rapid 

wing  flaps;  resting-  individuals  sitting  with  wings  fully  closed  (Rather  et  al.  2022); 

walking-  movement  from  one  point  to  another  along  the  substrate  using  the  legs; 

courtship- sequences of behaviours where males hover, land and rapidly flap their wings 

next  to  females,  and bend their  abdomen to  initiate  copulation  (Klein  & De Araújo, 

2010); copulation- where both male and female are mating; abdomen lifting- raising the 

abdomen at an angle from the normal resting body axis, usually performed by females as 

a courtship rejection behaviour  (Chouteau et al., 2017);  sitting near each other- where 

11

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2023. ; https://doi.org/10.1101/2023.10.24.563859doi: bioRxiv preprint 



both individuals are resting or basking within one wingspan from each other (Robertson 

et al. 2020). 

We used Spectator Go (BIOBSERVE, Fort Lee, NJ, USA) software on an Apple 

iPad  (1st generation)  to  manually  record  the  frequency  and  duration  of  behaviours 

performed by the two individuals during the assay. This software enables the observer to 

record user defined behaviours in real time, separately for the two individuals, without 

instantly  visualizing  quantities  during  the  recording,  and  has  been  used  in  previous 

studies to observe and record butterfly behaviours (Rather et al., 2022; Robertson et al., 

2020; Westerman et al., 2014). To reduce observer bias, only one observer recorded all 

the behaviours in this study. We did not use a video camera to record behaviours as some 

butterfly inter-individual interactions are minute and nuanced happening at a close range, 

while others occupy the full three-dimensional flight area of the cage, and simultaneously 

capturing both of these types of behaviours is challenging for a stationary camera, but 

relatively  straightforward  for  a  trained  human  observer.  Within  each  experiment,  we 

tested each male-female pair with all calls with at least 24 hours between each call assay,  

and randomized the order of calls for each pair. If either of the butterflies in the pair died 

between the assays, then those pairs were eliminated from being tested for the remaining 

calls.   

Experiment 1: Do H. m. plesseni butterflies behaviourally respond to predator bird 

calls
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To test whether H. m. plessini butterflies respond to their avian predator calls or to 

other birds or loud random noises in general, we subjected the butterflies to four call  

treatments  in  this  experiment:  rufous-tailed  jacamar  (N=22  pairs),  Eastern  kingbirds 

(N=22 pairs), toco toucan (N=22 pairs) and greenhouse background noise control (N=18 

pairs)  using  the  behavioural  assay  described  above  with  the  calls  randomized.  We 

conducted Experiment 1 from February 2019 to March 2020. 

Experiment 2: Does predator residence status influence butterfly response to bird call

Due  to  the  results  of  Experiment  1  (see  below),  we  conducted  a  follow  up 

experiment to test whether predator residence status (migratory or present year-round) 

influenced likelihood of H. m. plessini butterflies changing their behaviour in response to 

predator call. For this experiment, we used the calls of the resident tropical kingbird and 

the  migratory  Eastern  kingbird,  as  they  have  vocalizations  in  the  same  auditory 

frequencies,  and are  more closely related than the Eastern kingbird and rufous-tailed 

jacamar.  We  subjected  butterflies  to  three  call  treatments:  resident  tropical  kingbird 

(N=23  pairs),  migratory  Eastern  kingbird  (N=22  pairs)  and  the  control  greenhouse 

background noise control (N=25 pairs) using the same behavioural assay as Experiment 

1, as described above. We conducted Experiment 2 from August to December 2021. We 

conducted the same statistical analyses for both Experiment 1 and Experiment 2, albeit 

separately. 
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Statistical analyses

We downloaded the data from Spectator Go software and converted them into .csv 

files. Each file consisted of approximately 15 minutes of data, and each assay had four 

files (15 minutes before, and during plus after call for male and female separately). Each 

bout  of  behaviour  was  recorded  separately  by  the  software  for  the  10  behaviours 

described above. A de novo python code (supplementary material 2) was written to add 

each bout  of  a  behaviour  and provide the total  time spent  performing that  particular 

behaviour. This way, we got the total time spent by an individual butterfly performing 

behaviours for the whole assay. Further, we manually extracted the behavioural states 

before and after the start and end of calls, as well as extracted the behaviours performed a 

minute before, during and after the calls. We performed three separate analyses for each 

experiment: behavioural state change between before and after the start and end of calls; 

short term (1 minute) changes in behaviours between before, during, and after calls; and 

long term (14 minutes) changes in behaviour before and after calls. 

To determine whether butterflies changed their behavioural state in response to bird 

call,  we compared the behaviours performed across three  time points of an assay: 1) 

before vs after the start of call; 2) before vs after the end of call; and 3) before start vs  

after end of the call. We used generalized linear mixed models (GLMM) with change in  

behaviour between the above time points (yes or no) as the response variable, treatment 

(calls), and sex (male or female) as fixed predictor variables, and the order of calls as a 

random predictor  variable.  We later  used a  pairwise Fisher’s  test  to  determine if  the 
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proportion of individuals that changed their behaviours were similar or different between 

the treatments (bird calls and noise control). 

To test if the frequency and duration of short-term behaviours changed during and 

after  a  call  compared  to  before  a  call,  we  extracted  the  frequency  of  fluttering  and 

antenna wiggle and duration of the other eight behaviours for the minute before, minute 

during, and minute after the call. We performed Principal Component Analysis (PCA) for 

the  behavioural  data  during  these  three  minutes,  to  identify  the  correlation  between 

different  behaviours  and  identify  new composite  behavioural  variables.  We  removed 

abdomen lifting from the male data set and courtship from the female data set as males 

and females respectively did not perform these behaviours. We fit a linear mixed model 

(LMMs), followed by an ANOVA, with treatment (bird call), state (before, during, and 

after call) and their interaction as fixed predictor variables, the order of the calls as a  

random  predictor  variable,  and  the  first  three  principal  components  as  the  response 

variables. Further, we performed a Tukey HSD test to determine the pairwise differences 

between different combinations of treatment (bird call)  and state (before,  during,  and 

after  call).  Later,  we  tested  whether  male  courtship,  sitting  near  each  other, female 

abdomen  lifting,  copulation behaviours  changed  in  response  to  bird  calls  by  fitting 

LMMs followed by an ANOVA, with the same predictor variables. We ran these models 

for males and females separately, as males and females performed different behaviours. 

We also performed these analyses separately for experiments 1 and 2.
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Next, to test if there was a prolonged long term response of  butterfly behaviour to 

the bird calls, we extracted the frequency of fluttering and antenna wiggle and duration of 

the other eight behaviours for the 14 minutes before the call and the 14 minutes after the 

call,  and   performed  a  PCA for  these  28  minutes,  again  removing  abdomen  lifting 

behaviour from male data set and courtship  behaviour from the female data set. We fit 

LMM, followed by an ANOVA, with treatment (bird call), state (before, and after call), 

and their interaction as the fixed predictor variables, the order of the calls as a random 

predictor variable, and the first three principal components as the response variables for 

each sex. Further, we performed a Tukey HSD test to determine the pairwise differences 

between different combinations of treatment (bird call) and state (before, and after call). 

We also tested whether male courtship, sitting near, female abdomen lifting,  copulation 

behaviours changed in response to bird calls by fitting LMMs followed by an ANOVA, 

with the same predictor variables. We again ran these models for both males and females 

separately, and performed these analyses separately for experiments 1 and 2. 

All statistical analyses were run using R version 4.3.0  (R Core Team, 2023). All 

plots were generated using ggplot2 (Wickham, 2016) package. 

Ethical Note

 All butterflies used in this study were maintained in climate-controlled greenhouse 

conditions similar to those of their natural habitat, as stated in the U.S. Department of 

Agriculture, Animal and Plant Health Inspection Service permits P526P-17-00343 and 
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P526P-20-00417. Before and after the assays, all butterflies were maintained in cages 

with  ad libitum  food (nectar and flowering  Lantana spp. plants for pollen).  After the 

assays, they were moved to breeding cages with ad libitum food, where they were kept 

until natural death. No butterflies were sacrificed for the purpose of this study.  

Experiment 1 Results:

H. m. plessini immediately changed their behavioural state in response to the rufous-

tailed jacamar call

H. m. plessini  butterflies  immediately changed their  behavioural  state  when the 

rufous-tailed  jacamar  call  started  (χ2=  16.03,  p<0.01;  Supplementary  Figure  3A; 

Supplementary  Table  1,  2),  when  the  jacamar  call  stopped  (χ2=  17.47,  p<0.001; 

Supplementary  Figure  4A;  Supplementary  Table  3,  4),  and  when  compared  between 

before the call started versus after the call ended (χ2= 27.12, p<0.001, Table 1, 2, Figure 

1A). They did not significantly change their behavioural state in response to any other 

bird call, or in response to the noise control (Supplementary Table 1, 2, 3, 4; Table 1, 2).  

We did not find an effect of sex on the change in behavioural state when the calls started, 

when the calls stopped, or when compared between before the calls started versus after  

the calls ended nor was there an effect of call order on butterfly response (Supplementary 

Table 1, 3; Table 1).
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H. m. plessini  males increased their walking and fluttering behaviour during the 

playback of the rufous-tailed jacamar call:

When combining the behavioural data for the 3 minutes before, during, and after 

each call in a PCA for each sex, male PC2 values were higher during the rufous-tailed 

jacamar call compared to before and after the rufous-tailed jacamar call, and compared to 

before, during, and after the Eastern kingbird, toco toucan, and greenhouse background 

noise (ANOVA, F= 2.336, Df= 6, p= 0.0328; Figure 2C; Table 3; Supplementary Table 7; 

see Supplementary Table 5 for PCA loadings). There was no effect of any of the bird calls 

or  greenhouse  background  noise  control  on  male  PC1  (Figure  2A;  Table  3; 

Supplementary Table 7, 8),  male PC3 (Table 3; Supplementary Table 7),  female PC1 

(Figure  2B;  Table  3;  Supplementary  Table  7;  see  Supplementary  Table  6  for  PCA 

loadings),  female  PC2 (Figure  2D;  Table  2;  Supplementary Table  7),  or  female  PC3 

(Table 2; Supplementary Table 7). 

H. m. plessini males and females had no long-term changes in behaviour in response 

to calls: 

When combining the behavioural data for the 14 minutes before and after each call  

in  a  PCA for  each  sex,  there  was  no  effect  of  any  of  the  bird  calls  or  greenhouse 

background noise control on male PC1 (Supplementary Figure 5A; Supplementary Table 

10, 11; see Supplementary Table 8 for PCA loadings), male PC2 (Supplementary Figure 

5C; Supplementary Table 10, 11), male PC3 (Supplementary Table 10, 11); female PC1 
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(Supplementary Figure 5B; Supplementary Table 10, 11; see Supplementary Table 9 for 

PCA loadings), female PC2 (Supplementary Figure 5D; Supplementary Table 10, 11), or 

female PC3 (Supplementary Table 10, 11). 

No effect of predatory bird calls on H. m. plessini intersexual behaviours 

Male  courtship,  sitting  near  each  other,  female  abdomen  lifting,  copulation 

behaviours did not have short-term or long-term changes in response to any bird calls 

(Table 3; Supplementary Table 10).

Experiment 2 results:

While there are a number of hypotheses as to why H. m. plessini  did not change 

their behaviour in response to the migratory Eastern kingbird calls, but did change their 

behaviours in response to the resident jacamar calls, two we found particularly interesting 

were 1) that jacamars are year round residents while Eastern kingbirds are migratory; and 

2) jacamars and Eastern kingbirds have different call frequencies (Hz ranges). To test the 

hypothesis  that  residence status  is  driving  H. m.  plesseni behavioural  response while 

holding call frequency (Hz) constant, we then tested whether  H. m. plessini  butterflies 

changed their behaviour in response to the resident tropical kingbird call compared to the 

migratory Eastern kingbird call  in  Experiment  2,  as  these two kingbird species  have 

vocalizations in the same auditory frequency ranges (Supplementary Figure 2).
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Residence status of kingbirds did not change H. m. plessini behavioural state: 

We found that H. m. plessini butterflies did not change their behavioural state when 

either of the  resident or migratory kingbird calls or greenhouse background noise started 

(Supplementary Figure 3B; Supplementary Table 12, 13), when either of the kingbird 

calls or greenhouse background noise stopped (Supplementary Figure 4B, Supplementary 

Table 14, 15), and when compared between before the kingbird calls started versus after 

the  kingbird  calls  ended,  as  well  as  between  before  the  start  and  after  the  end  of  

greenhouse background noise (Figure 1B; Supplementary Table 16, 17). We did not find 

an effect of sex on the change in behavioural state when calls started, when the calls  

stopped, and when compared between before the calls started versus after the calls ended 

nor was there an effect of call order on butterfly response (Supplementary Table 12, 14, 

16).

Residence status of kingbirds did not change short-term H. m. plessini behaviours:

When combining the behavioural data for the 3 minutes before, during, and after 

each call in a PCA for each sex, there was no effect of any kingbird calls or greenhouse 

background noise control on male PC1 values (Figure 3A; Supplementary Table 20, 21; 

see Supplementary Table 18 for PCA loadings), on male PC2 (Figure 3C; Supplementary 

Table  20,  21),  male  PC3  (Supplementary  Table  20,  21),  female  PC1  (Figure  3B; 

Supplementary Table 20, 21; see Supplementary Table 19 for PCA loadings), female PC2 
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(Figure 3D; Supplementary Table 20, 21), and female PC3 (Supplementary Table 20, 21) 

values. 

 

Residence status of kingbirds did not change long-term H. m. plessini behaviours:

When combining the behavioural data for the 14 minutes before and after each call  

in a PCA for each sex, there was no effect of any of the kingbird calls or greenhouse 

background noise control on male PC1 (Supplementary Figure 6A; Supplementary Table 

24, 25; see Supplementary Table 22 for PCA loadings), male PC2 (Supplementary Figure 

6C; Supplementary Table 24, 25), male PC3 (Supplementary Table 24, 25); female PC1 

(Supplementary Figure 6B; Supplementary Table 24, 25; see Supplementary Table 23 for 

PCA loadings), female PC2 (Supplementary Figure 6D, Supplementary Table 24, 25), or 

female PC3 (Supplementary Table 24, 25). 

No effect of predatory kingbird calls on H. m. plessini intersexual behaviours 

Male  courtship,  sitting  near  each  other,  female  abdomen  lifting,  copulation 

behaviours did not have short-term or long-term changes in response to any bird calls 

(Supplementary Table 20, 24).

Discussion:

Heliconius melpomene plessini  butterflies changed their behaviour in response to 

predatory rufous-tailed jacamar calls but did not change their behaviour in response to 
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predatory Eastern kingbird or tropical kingbird calls. We found a sex-specific difference 

in  behaviour,  where  males,  but  not  females,  increased  their  fluttering  and  walking 

behaviours  during  the  playback  of  the  rufous-tailed  jacamar  calls.  The  observed 

behavioural changes in response to rufous-tailed jacamar calls are short-term and do not  

persist over an extended duration of time. 

A major finding of this study is that toxic, unpalatable, and aposematic Heliconius 

melpomene plessini butterfly changed their behaviour in response to the predatory rufous-

tailed  jacamar  calls.  Contrary  to  our  expectations,  H.  m.  plessini  butterflies  did  not 

change their behaviour in response to either the Eastern kingbird or tropical kingbird 

calls. Two non-mutually exclusive hypotheses can be postulated to explain these results: 

1) There may be reduced predation pressure from both the Eastern and tropical kingbirds 

compared to rufous-tailed jacamar, which has led to an evolved behavioural response to 

the rufous-tailed jacamar but not to two kingbird species, and/or 2) H. m. plessini may be 

incapable of hearing the Eastern and tropical kingbird calls. Since Eastern kingbirds are 

migratory and tropical kingbirds are year-round residents, we had hypothesized that, if 

H.m. plessini could hear the Eastern and tropical kingbird calls, they might respond to the 

resident tropical kingbird due to their year-round presence, but not the migratory Eastern 

kingbird. Tropical kingbird calls are similar in frequency to the calls of Eastern kingbird 

(Supplementary Figure 2).  However,  we found that  H. m.  plessini  butterflies  did not 

change their behaviour in response to either of the kingbird calls, suggesting that between 
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kingbird  species  variation  in  predation  pressure  was  not  sufficient  to  induce  H.  m. 

plesseni variation in response to Eastern and tropical kingbird calls. 

H. m. plessini may be under reduced predation pressure from kingbirds relative to 

rufous-tailed jacamars. While the rufous-tailed jacamar is a year-round resident of H. m. 

plesseni’s habitat, the Eastern kingbird is migratory and is not present during half of the 

year in South America, where H. m. plessini is found. Eastern kingbird is also frugivorous 

during their migration over Central and South America (Blake & Loiselle, 1992; Morton, 

1971).  While  this  does  not  explain  the  lack  of  response  to  the  tropical  kingbird,  an 

additional possibility is that  Heliconius melpomene may be differentially palatable for 

rufous tailed jacamars and tropical kingbirds. Future studies should explore whether there 

is variability in toxicity across different subspecies of  H. melpomene, or variability in 

predator sensitivity to  Heliconius toxicity. Although there is no current support for this 

hypothesis in Heliconius, the aposematic striped skunks (Mephitis mephitis) perform anti-

predatory behaviour in response to the calls of the great horned owl (Bubo virginianus) 

from which they are not chemically defended, but not in response to the calls of the 

coyote (Canis latrans), from which they are chemically defended (Fisher & Stankowich, 

2018). Moreover, we found that H. m. plessini did not change their behaviour in response 

to the frugivorous control toco toucan bird call, despite the toucan calls being in the range 

of  Heliconius  hearing,  which  may indicate  that  Heliconius  butterflies  are  capable  of 

differentiating between predatory and non-predatory bird calls.
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An alternative hypothesis is that  H. m. plessini  butterflies may not be capable of 

detecting kingbird calls  but are able to detect  the rufous tailed jacamar calls.  Rufous 

tailed  jacamar  calls  have  a  peak  frequency  below  4  kHz  (Mikhail  et  al.  2018; 

Supplementary Figure 2), whereas both the Eastern and tropical kingbirds have a peak 

call frequency above 4 kHz (Supplementary Figure 2). Previous electrophysiological tests 

of the auditory organ in  H. erato  found that  H. erato butterflies have the best hearing 

capabilities below 4 kHz at 70-90 dB power (Swihart, 1967). Any calls with frequencies 

above 4 kHz will require a higher decibel power to hear, which may be the case with the 

kingbird calls, as their peak call frequency is between 5-8 kHz. Similar trends have been 

observed in the blue morpho (Morpho peleides), and common wood nymph (Cercyonis 

pegala) butterflies, where a higher decibel power is required for higher frequency calls to 

elicit  a  response,  and  that  these  butterflies  are  tuned  to  hear  sounds  below  5  kHz 

(Fournier et al., 2013; Mikhail et al., 2018; Sun et al., 2018). Future studies in Heliconius 

can test this hypothesis by recording the butterfly responses to reduced frequency (below 

4 kHz) kingbird calls and enhanced frequency (above 5kHz) rufous-tailed jacamar calls, 

and  observe  whether  H.  m.  plesseni butterflies  behaviourally  respond  to  the  altered 

kingbird  and  jacamar  calls.  We  also  found  that H.  m.  plessini did  not  change  their 

behaviour in response to the toco toucan calls and greenhouse background noise despite 

their  calls  being below 4 KHz, suggesting that  H. m. plessini  are able to distinguish 

between bird calls within their hearing range.  

24

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2023. ; https://doi.org/10.1101/2023.10.24.563859doi: bioRxiv preprint 



Our  study  is  testing  the  hypothesis  that Heliconius change  their  behaviours  in 

response to predatory bird calls. Although an auditory organ has not yet been described in 

Heliconius  melpomene,  the  auditory  organ  is  described  in  a  closely  related  butterfly 

Heliconius  erato (Swihart,  1967).  Here  we do provide  evidence  that  H. m.  plesssini 

changed their behaviour after hearing their predatory rufous-tailed jacamar calls. Future 

work  can  explore  the  presence  of  a  morphological  hearing  structure  in  Heliconius 

melpomene  plessini  and  their  electrophysiological  range  like  that  performed in  other 

butterflies (Lane et al.  2008; Lucas et al.  2009; Mikhail  et  al.  2018),  to enhance our 

understanding of the physiological mechanisms H. m. plesseni may be using to facilitate 

their response to the rufous-tailed jacamar.

   We found that  males,  but not females,  changed their  behaviour in response to the 

rufous-tailed jacamar calls.  This male-specific response to predators is  similar to that 

found in other species, and may reflect sexual dimorphic predation pressures. Previous 

studies in wolf spiders (Pardosa milvina) have found that males, but not females, used a 

predatory chemical cue experience to decrease predation from a live predator (Sitvarin 

and  Rypstra,  2012).  Similarly,  male  yellow-billed  marmots  (Marmota  flaviventris) 

decreased foraging followed by a playback of alarm calls (Lea and Blumstein, 2011). The 

sex-specific  differences  observed  in  the  response  of  H.  m.  plessini  might  reflect 

differences in predation pressures between the sexes. Male  Heliconius  butterflies in the 

wild spend greater time flying in the middle of the forest canopy, and mostly near their  

larval/food plants in search of females or for foraging whereas female Heliconius spend 
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time fluttering near the understory in search of host plants for egg-laying (Mallet and 

Gilbert, 1995). Jacamars and kingbirds are “aerial hawking” predators that catch insects 

in  flight  (Fitzpatrick,  1980),  and  flying  male  butterflies  might  be  at  greater  risk  of 

predation. This may be the reason for increased fluttering and walking during the jacamar 

calls. Moreover, Swihart observed fast wing flutters in H. erato when he exposed them to 

loudspeaker  generated sound (Swihart,  1967),  indicating that  butterflies  may have an 

innate wing fluttering response to sound cues. Similar results have been found in Erebia 

butterflies, where they flutter in response to sound (Ribaric and Gogala 1996) and in the 

peacock butterflies (Inachis io) where they walk and flutter to avoid rodent predation 

during winter hibernation (Olofsson et al., 2011). In Heliconius, fluttering may advertise 

aposematic colouration and could reinforce the birds’ learned behaviour to avoid brightly 

coloured  butterflies  (Langham,  2006).  Similar  to  the  mimicry  of  aposematic  colours 

among Heliconius  species,  there is also evidence of locomotor mimicry in the flight of 

unpalatable  Heliconius, including flight measures associated with response to jacamars 

(Chai & Srygley, 1990; Srygley, 1994). Future studies of the responses in H. melpomene, 

their  model  H. erato and other  species  of  the  same aposematic  mimicry rings  could 

inform us  if  certain  predators  have  influenced  the  evolution  of  mimetic  behavioural 

responses.

Palatability experiments with jacamars have found that  experienced birds sight-

reject  flying  Heliconius butterflies  (Pinheiro  &  Campos,  2019).  Therefore,  flying, 

fluttering  and  walking  behaviours  could  be  advantageous  under  different  ecological 
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contexts  (for  example  bird  predator  community  and  experience)  as  an  immediate 

response to predator’s presence, which may be another reason why we did not see the 

behavioural changes over a long-term (14 minutes) period. Future studies could look at 

the  advantages  of  these  behaviours  under  different  ecological  contexts  such  as 

microhabitats  (Dell’Aglio et al., 2022), as well as test the behavioural responses of the 

butterflies using other predatory birds.

 

Conclusions:

We found that unpalatable and brightly coloured  Heliconius melpomene plessini 

butterflies respond and change their behaviour during the playback of the rufous-tailed 

jacamar call.  This change in behaviour is sex-specific,  where males,  but not females, 

increase their walking and fluttering behaviour over a short time-frame. Males reverted 

back to their original behaviour after the call ended. H. m. plessini did not change their 

behaviour in response to the two kingbird and the toco toucan calls. Our study opens 

avenues for future research in the field of butterfly auditory anti-predatory behaviour 

response, its mechanistic underpinnings and ecological and evolutionary consequences, 

especially in the context of mimicry.  
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Figures:

Figure 1:  Proportion of  H. m. plessini  individuals changing behaviour in response to 

calls (between before start and after end of calls) for A) experiment 1; B) experiment 2;  

Different letters on each bars indicate statistical significance at p<0.05. 
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Figure  2:  Mean ±  SE of  principal  component  variables  for  male  and  female  H.  m. 

plessini for a minute before, during and after calls. A) PC 1 in males for experiment 1; B)  

PC 1 in females for experiment 1; C) PC 2 in males for experiment 1; D) PC 2 in females 

for experiment 1. *** indicates significance with p<0.0001. 
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Figure  3:  Mean ±  SE of  principal  component  variables  for  male  and  female  H.  m. 

plessini for a minute before, during and after calls. A) PC 1 in males for experiment 2; B)  

PC 1 in females for experiment 2; C) PC 2 in males for experiment 2; D) PC 2 in females 

for experiment 2. None of them are significantly different from each other.
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Tables:

Table 1: GLMM results on the effect of treatment (calls) and sex on proportion of 
butterflies changing their behaviour in response to calls. p<0.05 are bolded

Fixed effect Estimate SE z value Pr (>|z|)

Intercept -2.55 0.64 -3.98 <0.0001

Treatment (Rufous-tailed Jacamar) 2.67 0.67 3.96 <0.0001

Treatment (Eastern Kingbird) 0.5 0.74 0.67 0.640

Treatment (Toco Toucan) 1.24 0.69 1.78 0.777

Sex (male) 0.29 0.38 0.76 0.44

Random effect

Order (Intercept) 1.7e-15 4.1e-8
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Table  2:  Pairwise  differences  in  the  proportion  of  individuals  changing  their 
behavioural state in response to calls in experiment 1. p<0.05 are bolded

ANOVA Type II Wald Chisquare test

Treatment: χ2 = 27.12; df = 3; p-value < 0.0001

Sex: χ2 = 0.577; df = 1; p-value = 0.44

Pairwise comparisons between treatment

Group 1 Group 2 p-value Adj. p-value

Rufous-tailed Jacamar Eastern Kingbird 0.00002 0.0001

Rufous-tailed Jacamar Toucan 0.002 0.01

Rufous-tailed Jacamar Greenhouse noise 0.000005 0.00003

Eastern Kingbird Toco Toucan 0.28 1

Eastern Kingbird Greenhouse noise 0.72 1

Toco Toucan Greenhouse noise 0.07 0.47
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Table 3: Effect of treatment (rufous-tailed jacamar, Eastern kingbird, toco toucan 
and greenhouse background noise calls), state (one minute before, during and after 
call) and their interaction on male and female PC1 and PC2 in experiment 1. p<0.05 
are bolded

♂ AIC Df F value Pr (>F) ♀ AIC Df F value Pr (>F)

PC1 884 PC1 910

Treatment 3 5.887 0.0006 Treatment 3 5.090 0.001

State 2 0.447 0.640 State 2 2.794 0.063

Treatment*State 6 0.540 0.777 Treatment*State 6 0.732 0.624

PC2 781 PC2 805

Treatment 3 13.900 2.2e-08 Treatment 3 2.759 0.043

State 2 3.649 0.0275 State 2 2.498 0.084

Treatment*State 6 2.336 0.0328 Treatment*State 6 0.373 0.896

PC3 787 PC3 745

Treatment 3 1.432 0.234 Treatment 3 2.017 0.112

State 2 0.856 0.426 State 2 1.071 0.344

Treatment*State 6 0.697 0.652 Treatment*State 6 0.577 0.748

Courtship 239 Copulation 1692

Treatment 3 0.984 0.401 Treatment 3 2.765 0.042

State 2 0.999 0.370 State 2 0 1

Treatment*State 6 0.984 0.437 Treatment*State 6 0 1

Sitting near other 1659 Abdomen lift

Treatment 3 3.500 0.016 Treatment 3 0.922 0.431

State 2 0.011 0.988 State 2 0.997 0.370

Treatment*State 6 0.003 1 Treatment*State 6 0.922 0.480
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Supplementary  Figure  1: Experimental  design.  A)  3-15-day  male  and  female  H.  m.  plessini 
butterflies were subjected in an experimental cage with a blue tooth speaker and a Lantana spp. plant 
during each experimental assay. B) The timeline of each assay conducted where the butterflies were 
acclimated for 15 minutes and their behaviours recorded for the next 30 minutes. During the 16 th 

minute, a call was randomly played for a minute. C) The calls used in the two experiments in this 
study. Clockwise from top left in experiment 1: rufous-tailed jacamar, Eastern kingbird, greenhouse 
background  noise,  and  toco  toucan.  Clockwise  from top  left  in  experiment  2:  tropical  kingbird, 
Eastern kingbird, and greenhouse background noise.
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Supplementary Figure 2: Spectograms of the calls used during this study A) rufous-tailed jacamar; 
B) Eastern kingbird; C) toco toucan; D) tropical kingbird; E) greenhouse background noise.
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Supplementary Figure 3: Proportion of H. m. plessini individuals changing behaviour in response to 
the start of the calls (between before start and after start of calls) for A) experiment 1; B) experiment  
2; Different letters on each bars indicate statistical significance at p<0.05.
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Supplementary Figure 4: Proportion of H. m. plessini individuals changing behaviour in response to 
the end of the calls (between before end and after end of calls) for A) experiment 1; B) experiment 2;  
Different letters on each bars indicate statistical significance at p<0.05.
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Supplementary Figure 5:  Mean ± SE of principal component variables for male and female H. m. 
plessini for 14 minutes before, and after calls. A) PC 1 in males for experiment 1; B) PC 1 in females  
for experiment 1; C) PC 2 in males for experiment 1; D) PC 2 in females for experiment 1. None of  
them are significantly different from each other.
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Supplementary Figure 6: Mean ± SE of principal component variables for male and female H. m. 
plessini for 14 minutes before, and after calls. A) PC 1 in males for experiment 2; B) PC 1 in females  
for experiment 2; C) PC 2 in males for experiment 2; D) PC 2 in females for experiment 2. None of  
them are significantly different from each other.
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Supplementary Table 1: GLMM results on the effect of treatment (calls) and sex on 
proportion of butterflies changing their behaviour at the start of calls in experiment 
1. p<0.05 are bolded

Fixed effect Estimate SE z value Pr (>|z|)

Intercept -2.97 0.76 -3.88 <0.001

Treatment (Rufous-tailed Jacamar) 2.30 0.78 2.91 <0.001

Treatment (Eastern Kingbird) 0.17 0.94 0.18 0.856

Treatment (Toco Toucan) 1.42 0.81 1.73 0.082

Sex (male) 0.26 0.42 0.62 0.529

Random effect

Order (Intercept) 0 0
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Supplementary  Table  2:  Pairwise  differences  in  the  proportion  of  individuals 
changing their behavioural state in at the start of calls in experiment 1. p<0.05 are 
bolded

ANOVA Type II Wald Chisquare test

Treatment: χ2 = 16.03; df = 3; p-value < 0.01

Sex: χ2 = 0.396; df = 1; p-value = 0.529

Pairwise comparisons between treatment

Group 1 Group 2 p-value Adj. p-value

Rufous-tailed Jacamar Eastern Kingbird 0.0007 0.004

Rufous-tailed Jacamar Toucan 0.104 0.624

Rufous-tailed Jacamar Greenhouse noise 0.001 0.006

Eastern Kingbird Toco Toucan 0.11 0.7

Eastern Kingbird Greenhouse noise 1 1

Toco Toucan Greenhouse noise 0.10 0.61
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Supplementary Table 3: GLMM results on the effect of treatment (calls) and sex on 
proportion of butterflies changing their behaviour at the end of calls in experiment 
1. p<0.05 are bolded

Fixed effect Estimate SE z value Pr (>|z|)

Intercept -2.46 0.64 -3.79 <0.001

Treatment (Rufous-tailed Jacamar) 2.22 0.67 3.30 <0.001

Treatment (Eastern Kingbird) 0.44 0.75 0.59 0.554

Treatment (Toco Toucan) 1.62 0.69 2.34 <0.05

Sex (male) 0.13 0.37 0.37 0.709

Random effect

Order (Intercept) 0.06 0.25
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Supplementary  Table  4:  Pairwise  differences  in  the  proportion  of  individuals 
changing their behavioural state in at the end of calls in experiment 1. p<0.05 are 
bolded

ANOVA Type II Wald Chisquare test

Treatment: χ2 = 17.47; df = 3; p-value < 0.001

Sex: χ2 = 0.139; df = 1; p-value = 0.709

Pairwise comparisons between treatment

Group 1 Group 2 p-value Adj. p-value

Rufous-tailed Jacamar Eastern Kingbird 0.001 0.006

Rufous-tailed Jacamar Toucan 0.197 1

Rufous-tailed Jacamar Greenhouse noise 0.0002 0.001

Eastern Kingbird Toco Toucan 0.07 0.451

Eastern Kingbird Greenhouse noise 0.724 1

Toco Toucan Greenhouse noise 0.015 0.093
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Supplementary Table 5: Loadings of each behaviour in Principal Component (PC) 
composite  variables  for  males  in  a  minute  before,  during,  and  after  calls  in 
experiment 1

Behaviour PC1 PC2 PC3

Rest 0.673 0.112 0.115

Fly 0.170 0.100 0.689

Bask 0.602 0.294 0.200

Flutter 0.195 0.674 0.088

Court 0.053 0.015 0.600

Copulate 0.095 0.254 0.009

Walk 0.169 0.602 0.140

Antenna wiggle 0.253 0.080 0.281

Sitting near each other 0.108 0.025 0.061

% Variance explained 22.28 17.05 14.43

% Total variance explained 22.28 39.33 53.77
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Supplementary Table 6: Loadings of each behaviour in Principal Component (PC) 
composite  variables  for  females  in  a  minute  before,  during  and  after  calls  in 
experiment 1

Behaviour PC1 PC2 PC3

Rest 0.605 0.269 0.208

Fly 0.193 0.236 0.576

Bask 0.490 0.493 0.136

Flutter 0.362 0.577 0.016

Copulate 0.066 0.162 0.583

Walk 0.355 0.512 0.149

Antenna wiggle 0.304 0.071 0.491

Lifting abdomen 0.028 0.030 0.037

% Variance explained 28.18 17.83 13.77

% Total variance explained 28.18 46.02 59.79
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Supplementary Table 7: ANOVA Post-hoc test results with PC as dependent 
variables and the treatments (calls), state (before, during, and after) and their 
interaction as response variables for males and females in a minute before, during, 
and after calls in experiment 1. EK= Eastern kingbird; RJ=Rufous-tailed jacamar; 
TT=Toco toucan; GN=Greenhouse background noise; Difference=pairwise 
difference; lwr=lower range; upr=upper range; padj= adjusted p-value.  

♂ ♀

PC1 PC1

Treatment Difference lwr upr padj Difference lwr upr padj

EK-RJ 0.861 0.235 1.487 0.002 0.418 -0.240 1.077 0.357

TT-RJ 0.368 -0.264 1.001 0.434 0.141 -0.525 0.807 0.947

GN-RJ 0.882 0.223 1.542 0.003 0.982 0.287 1.676 0.001

TT-EK -0.492 -1.125 0.140 0.185 -0.276 -0.943 0.389 0.705

GN-EK 0.021 -0.638 0.680 0.999 0.564 -0.130 1.258 0.155

GN-TT 0.513 -0.512 1.180 0.192 0.840 0.138 1.542 0.011

State

During-Before -0.153 -0.661 0.355 0.757 -0.516 -1.051 0.019 0.061

After-Before 0.040 -0.468 0.548 0.981 -0.129 -0.665 0.406 0.836

After-During 0.193 -0.315 0.701 0.643 0.386 -0.149 0.922 0.206

PC2 PC2

Treatment Difference lwr upr padj Difference lwr upr padj

EK-RJ -0.934 -1.443 -0.426 0.00002 0.226 -0.307 0.761 0.690

TT-RJ -1.108 -1.622 -0.594 0.000004 0.583 0.042 1.124 0.028

GN-RJ -1.074 -1.610 -0.538 0.000002 0.154 -0.408 0.717 0.893

TT-EK -0.173 -0.688 0.340 0.818 0.356 -0.183 0.897 0.322

GN-EK -0.139 -0.675 0.396 0.906 -0.072 -0.635 0.490 0.987

GN-TT 0.033 -0.507 0.575 0.998 -0.429 -0.998 0.140 0.209

State

During-Before 0.454 0.040 0.867 0.027 0.396 -0.037 0.830 0.081

After-Before 0.111 -0.301 0.524 0.799 0.102 -0.332 0.536 0.844

After-During -0.342 -0.755 0.070 0.125 -0.294 -0.728 0.140 0.248
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Supplementary Table 8: Loadings of each behaviour in Principal Component (PC) 
composite variables for males in 14 minutes before and after calls in experiment 1

Behaviour PC1 PC2 PC3

Rest 0.465 0.402 0.242

Fly 0.276 0.407 0.350

Bask 0.334 0.575 0.147

Flutter 0.443 0.378 0.235

Court 0.117 0.282 0.599

Copulate 0.006 0.093 0.039

Walk 0.489 0.275 0.321

Antenna wiggle 0.377 0.182 0.240

Sitting near each other 0.047 0.016 0.467

% Variance explained 29.23 19.82 15.88

% Total variance explained 29.23 49.06 64.94

62

948
949
950

951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2023. ; https://doi.org/10.1101/2023.10.24.563859doi: bioRxiv preprint 



Supplementary Table 9: Loadings of each behaviour in Principal Component (PC) 
composite variables for females in 14 minutes before and after calls in experiment 1

Behaviour PC1 PC2 PC3

Rest 0.548 0.285 0.204

Fly 0.320 0.272 0.104

Bask 0.469 0.416 0.153

Flutter 0.388 0.537 0.026

Copulate 0.045 0.136 0.842

Walk 0.376 0.446 0.051

Antenna wiggle 0.262 0.332 0.381

Sit near each other 0.041 0.087 0.246

Lifting abdomen 0.100 0.215 0.068

% Variance explained 28.99 17.63 12.24

% Total variance explained 28.99 46.63 58.87
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Supplementary  Table  10:  Effect  of  treatment  (Rufous-tailed  Jacamar,  Eastern 
Kingbird, Toco Toucan and Greenhouse background noise calls), state (before call 
and after call) and their interaction on 14 minute behaviours before and after call,  
and male PC1, PC2, PC3, courtship, copulation, sit near and female PC1, PC2, PC3, 
abdomen lifting behaviours in experiment 1.

♂ AIC Df F value Pr (>F) ♀ AIC Df F value Pr (>F)

PC1 644 PC1 635

Treatment 3 0.734 0.533 Treatment 3 3.615 0.014

State 1 0.014 0.907 State 1 1.488 0.224

Treatment*State 3 1.068 0.364 Treatment*State 3 0.236 0.871

PC2 580 PC2 560

Treatment 3 1.482 0.222 Treatment 3 0.731 0.535

State 1 0.380 0.538 State 1 0.155 0.284

Treatment*State 3 0.133 0.952 Treatment*State 3 0.770 0.512

PC3 542 PC3 500

Treatment 3 1.639 0.183 Treatment 3 1.142 0.334

State 1 0.664 0.416 State 1 0.498 0.481

Treatment*State 3 0.062 0.980 Treatment*State 3 0.433 0.730

Courtship 1606 Copulation 1983

Treatment 3 1.313 0.272 Treatment 3 1.967 0.121

State 1 1.933 0.166 State 1 0 1

Treatment*State 3 0.243 0.866 Treatment*State 3 0 1

Sitting near other 2027 Abdomen lift 1676

Treatment 3 0.953 0.417 Treatment 3 0.613 0.608

State 1 0.264 0.608 State 1 0.621 0.432

Treatment*State 3 0.221 0.882 Treatment*State 3 0.979 0.404
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Supplementary  Table  11:  ANOVA post-hoc  test  results  with  PC  as  dependent 
variables and the treatments (calls), state (before and after) and their interaction as 
response variables for males and females in 14 minutes before and after calls in 
experiment 1. EK= Eastern kingbird; RJ=Rufous-tailed jacamar; TT=Toco toucan; 
GN=Greenhouse  background  noise;  Difference=  pairwise  difference;  lwr=lower 
range; upr=upper range; padj= adjusted p-value.

♂ ♀

PC1 PC1

Treatment Difference lwr upr padj Difference lwr upr padj

EK-RJ 0.160 -0.755 1.076 0.968 0.064 -0.956 0.826 0.997

TT-RJ 0.305 -0.610 1.221 0.821 -0.043 -0.934 0.848 0.999

GN-RJ 0.528 -0.435 1.492 0.486 0.948 0.010 1.887 0.046

TT-EK 0.145 -0.759 1.050 0.975 0.021 -0.859 0.902 0.999

GN-EK 0.367 -0.586 1.321 0.748 1.013 0.084 1.942 0.026

GN-TT 0.222 -0.731 1.176 0.929 0.992 0.063 1.920 0.031

State

After-
Before

-0.029 -0.530 0.471 0.907 -0.301 -0.789 0.186 0.224

PC2 PC2

Treatment Difference lwr upr padj Difference lwr upr padj

EK-RJ 0.202 -0.552 0.956 0.898 0.177 -0.533 0.887 0.916

TT-RJ -0.250 -1.005 0.503 0.823 0.382 -0.328 1.093 0.502

GN-RJ -0.370 -1.165 0.423 0.620 0.305 -0.443 1.053 0.714

TT-EK -0.452 -1.198 0.292 0.394 0.205 -0.497 0.907 0.872

GN-EK -0.572 -1.358 0.213 0.235 0.128 -0.612 0.868 0.969

GN-TT -0.119 -0.905 0.666 0.978 -0.077 -0.817 0.663 0.993

State

After-
Before

-0.128 -0.542 0.284 0.538 0.211 -0.177 0.600 0.284
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Supplementary Table 12: GLMM results on the effect of treatment (calls) and sex on 
proportion of butterflies changing their behaviour at the start of calls in experiment 
2. p<0.05 are bolded

Fixed effect Estimate SE z value Pr (>|z|)

Intercept -2.03 0.48 -4.18 <0.0001

Treatment (Eastern Kingbird) 0.57 0.57 1.01 0.312

Treatment (Tropical Kingbird) 1.16 0.54 2.15 <0.05

Sex (male) 0.08 0.42 0.21 0.832

Random effect

Order (Intercept) 6.9e-15 8.3e-8
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Supplementary  Table  13:  Pairwise  differences  in  the  proportion  of  butterflies 
changing their behavioural state in response to the start of calls in experiment 2

ANOVA Type II Wald Chisquare test

Treatment: χ2 = 4.807; df = 2; p-value = 0.09

Sex: χ2 = 0.044; df = 1; p-value = 0.832

Pairwise comparisons between treatment

Group 1 Group 2 p-value Adj. p-value

Tropical Kingbird Eastern Kingbird 0.336 1

Tropical Kingbird Greenhouse noise 0.042 0.128

Eastern Kingbird Greenhouse noise 0.402 1
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Supplementary Table 14: GLMM results of the effect of treatment (calls) and sex on 
proportion of butterflies changing their behaviour at the end of calls in experiment 
2. p<0.05 are bolded

Fixed effect Estimate SE z value Pr (>|z|)

Intercept -1.55 0.41 -3.70 <0.001

Treatment (Eastern Kingbird) 0.47 0.49 0.95 0.340

Treatment (Tropical Kingbird) 0.68 0.48 1.41 0.157

Sex (male) 0.07 0.39 0.19 0.844

Random effect

Order (Intercept) 0 0
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Supplementary table 15: Pairwise differences in the proportion of males and females 
changing their behavioural state in response to the end of calls in experiment 2

ANOVA Type II Wald Chisquare test

Treatment: χ2 = 2.037; df = 2; p-value = 0.361

Sex: χ2 = 0.038; df = 1; p-value = 0.844

Pairwise comparisons between treatment

Group 1 Group 2 p-value Adj. p-value

Tropical Kingbird Eastern Kingbird 0.817 1

Tropical Kingbird Greenhouse noise 0.231 0.693

Eastern Kingbird Greenhouse noise 0.459 1
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Supplementary Table 16: GLMM results of the effect of treatment (calls) and sex on 
proportion of butterflies changing their behaviour in response to calls in experiment 
2. p<0.05 are bolded

Fixed effect Estimate SE z value Pr (>|z|)

Intercept -1.31 0.38 -3.43 <0.001

Treatment (Eastern Kingbird) 0.89 0.44 2.00 0.044

Treatment (Tropical Kingbird) 0.98 0.44 2.20 0.027

Sex (male) 0.31 0.35 0.88 0.376

Random effect

Order (Intercept) 0 0
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Supplementary  table  17: Pairwise  differences  in  the  proportion  of  individuals 
changing their behavioural state in response to the calls in experiment 2

ANOVA Type II Wald Chisquare test

Treatment: χ2 = 5.756; df = 2; p-value = 0.056

Sex: χ2 = 0.783; df = 1; p-value = 0.376

Pairwise comparisons between treatment

Group 1 Group 2 p-value Adj. p-value

Tropical Kingbird Eastern Kingbird 1 1

Tropical Kingbird Greenhouse noise 0.032 0.096

Eastern Kingbird Greenhouse noise 0.052 0.158
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Supplementary Table 18: Loadings of each behaviour in Principal Component (PC) 
composite  variables  for  males  in  a  minute  before,  during  and  after  calls  in 
experiment 2

Behaviour PC1 PC2 PC3

Rest 0.537 0.514 0.139

Fly 0.292 0.017 0.413

Bask 0.274 0.401 0.400

Flutter 0.485 0.438 0.224

Court 0.258 0.026 0.332

Copulate 0.033 0.463 0.622

Walk 0.493 0.400 0.249

Antenna wiggle 0.056 0.074 0.194

% Variance explained 23.84 19.50 16.99

% Total variance explained 23.84 43.35 60.34
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Supplementary Table 19: Loadings of each behaviour in Principal Component (PC) 
composite  variables  for  females  in  a  minute  before,  during  and  after  calls  in 
experiment 2

Behaviour PC1 PC2 PC3

Rest 0.427 0.609 0.087

Fly 0.277 0.017 0.141

Bask 0.365 0.288 0.556

Flutter 0.506 0.314 0.319

Copulate 0.121 0.598 0.550

Walk 0.478 0.275 0.420

Antenna wiggle 0.307 0.045 0.278

Lifting abdomen 0.106 0.099 0.045

% Variance explained 27.03 19.39 15.16

% Total variance explained 27.03 46.42 61.58
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Supplementary Table 20: Effect of treatment (Tropical Kingbird, Eastern Kingbird, 
and Greenhouse background noise calls), state (before, during, and after call) and 
their interaction on male PC1, PC2, PC3, courtship, sit near and female PC1, PC2, 
PC3,  copulation, abdomen lifting  behaviours  in experiment 2. p<0.05 bolded. For 
male sit near behaviour, there were zero occurrences.

♂ AIC Df F value Pr (>F) ♀ AIC Df F value Pr (>F)

PC1 760 PC1 784

Treatment 2 0.062 0.940 Treatment 2 0.599 0.550

State 2 0.440 0.645 State 2 1.249 0.289

Treatment*State 4 0.249 0.910 Treatment*State 4 0.172 0.952

PC2 713 PC2 712

Treatment 2 2.531 0.082 Treatment 2 2.361 0.096

State 2 0.667 0.514 State 2 0.207 0.813

Treatment*State 4 0.048 0.995 Treatment*State 4 0.167 0.954

PC3 683 PC3 661

Treatment 2 3.157 0.044 Treatment 2 1.075 0.343

State 2 0.015 0.985 State 2 0.385 0.681

Treatment*State 4 0.205 0.935 Treatment*State 4 0.453 0.770

Courtship 1021 Copulation 1929

Treatment 2 2.064 0.130 Treatment 2 3.413 0.034

State 2 0.292 0.747 State 2 0 1

Treatment*State 4 0.731 0.572 Treatment*State 4 0 1

Sitting near other NA Abdomen lift 1034

Treatment 2 0 0 Treatment 2 1.279 0.280

State 2 0 0 State 2 1.588 0.207

Treatment*State 4 0 0 Treatment*State 4 1.292 0.274
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Supplementary  Table  21:  ANOVA post-hoc  test  results  with  PC  as  dependent 
variables  and  the  treatments  (calls),  state  (before,  during,  and  after)  and  their 
interaction as response variables for males and females in a minute before, during, 
and  after  calls  in  experiment  2.  EK= Eastern  kingbird;  TK=Tropical  kingbird; 
GN=Greenhouse  background  noise;  Difference=  pairwise  difference;  lwr=lower 
range; upr=upper range; padj= adjusted p-value.

♂ ♀

PC1 PC1

Treatment Difference lwr upr padj Difference lwr upr padj

EK-TK -0.055 -0.620 0.508 0.970 -0.120 -0.717 0.477 0.883

GN-TK -0.080 -0.633 0.472 0.936 0.150 -0.435 0.735 0.817

GN-EK -0.025 -0.578 0.527 0.993 0.270 -0.315 0.856 0.520

State

During-
Before

-0.213 -0.773 0.339 0.627 -0.078 -0.667 0.511 0.947

After-
Before

-0.144 -0.701 0.411 0.812 -0.373 -0.962 0.215 0.294

After-
During

0.072 -0.483 0.629 0.949 -0.295 -0.884 0.293 0.463

PC2 PC2

Treatment Difference lwr upr padj Difference lwr upr padj

EK-TK -0.409 -0.914 0.095 0.136 0.028 -0.475 0.533 0.990

GN-TK -0.417 -0.912 0.077 0.116 -0.376 -0.870 0.118 0.173

GN-EK -0.007 -0.502 0.486 0.999 -0.404 -0.899 0.089 0.131

State

During-
Before

0.175 -0.322 0.673 0.684 -0.002 -0.499 0.495 0.999

After-
Before

0.234 -0.263 0.731 0.508 0.116 -0.381 0.613 0.845

After-
During

0.058 -0.438 0.556 0.957 0.118 -0.379 0.615 0.840
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Supplementary Table 22: Loadings of each behaviour in Principal Component (PC) 
composite variables for males in 14 minutes before and after calls in experiment 2

Behaviour PC1 PC2 PC3

Rest 0.013 0.435 0.374

Fly 0.325 0.102 0.225

Bask 0.047 0.233 0.631

Flutter 0.480 0.052 0.378

Court 0.538 0.207 0.190

Copulate 0.244 0.636 0.039

Walk 0.262 0.203 0.401

Antenna wiggle 0.014 0.455 0.217

Sit near each other 0.491 0.212 0.141

% Variance explained 24.60 20.21 17.82

% Total variance explained 24.60 44.81 62.64

76

1232
1233
1234

1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2023. ; https://doi.org/10.1101/2023.10.24.563859doi: bioRxiv preprint 



Supplementary Table 23: Loadings of each behaviour in Principal Component (PC) 
composite variables for females in 14 minutes before and after calls in experiment 2

Behaviour PC1 PC2 PC3

Rest 0.210 0.708 0.151

Fly 0.350 0.029 0.221

Bask 0.430 0.234 0.262

Flutter 0.424 0.180 0.462

Copulate 0.278 0.603 0.319

Walk 0.452 0.090 0.429

Antenna wiggle 0.355 0.062 0.360

Sit near each other 0.078 0.175 0.468

Lifting abdomen 0.227 0.047 0.097

% Variance explained 29.96 18.61 13.99

% Total variance explained 29.96 48.58 62.58
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Supplementary  Table  24:  Effect  of  treatment  (Rufous-tailed  Jacamar,  Eastern 
Kingbird, Toco Toucan and Greenhouse background noise calls), state (before call 
and after call) and their interaction on 14 minute behaviors before and after call, 
and male PC1, PC2, PC3, courtship, copulation, sit near and female PC1, PC2, PC3, 
abdomen lifting behaviours in experiment 2.

♂ AIC Df F value Pr (>F) ♀ AIC Df F value Pr (>F)

PC1 527 PC1 555

Treatment 2 0.558 0.574 Treatment 2 1.184 0.309

State 1 0.288 0.592 State 1 0.002 0.961

Treatment*State 2 0.840 0.434 Treatment*State 2 0.010 0.990

PC2 497 PC2 486

Treatment 2 1.979 0.142 Treatment 2 1.363 0.259

State 1 1.212 0.273 State 1 0.463 0.497

Treatment*State 2 0.025 0.975 Treatment*State 2 0.280 0.756

PC3 483 PC3 443

Treatment 2 0.009 0.991 Treatment 2 2.640 0.075

State 1 0.060 0.808 State 1 0.645 0.423

Treatment*State 2 0.391 0.677 Treatment*State 2 0.573 0.565

Courtship 1436 Copulation 2028

Treatment 2 0.492 0.612 Treatment 2 2.821 0.063

State 1 0.332 0.565 State 1 0.838 0.361

Treatment*State 2 0.829 0.439 Treatment*State 2 0.112 0.894

Sitting near other 1148 Abdomen lift 1456

Treatment 2 0.115 0.891 Treatment 2 0.101 0.904

State 1 1.041 0.309 State 1 0.002 0.966

Treatment*State 2 0.268 0.765 Treatment*State 2 0.554 0.576
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Supplementary Table 25: ANOVA post-hoc test results with PC as dependent 
variables and the treatments (calls), state (before and after) and their interaction as 
response variables for males and females in 14 minutes before, during, and after 
calls in experiment 2. EK= Eastern kingbird; TK=Tropical kingbird; 
GN=Greenhouse background noise; Difference= pairwise difference; lwr=lower 
range; upr=upper range; padj= adjusted p-value.

♂ ♀

PC1 PC1

Treatment Difference lwr upr padj Difference lwr upr padj

EK-TK 0.059 -0.683 0.802 0.980 -0.057 -0.879 0.763 0.984

GN-TK 0.304 -0.423 1.032 0.584 0.418 -0.387 1.223 0.437

GN-EK 0.244 -0.483 0.972 0.705 0.476 -0.329 1.281 0.343

State

After-
Before

-0.135 -0.634 0.363 0.592 0.013 -0.583 0.565 0.961

PC2 PC2

Treatment Difference lwr upr padj Difference lwr upr padj

EK-TK -0.290 -0.958 0.378 0.560 -0.379 -1.024 0.264 0.345

GN-TK -0.549 -1.204 0.105 0.118 -0.391 -1.023 0.239 0.308

GN-EK -0.259 -0.914 0.395 0.615 -0.012 -0.643 0.619 0.998

State

After-
Before

-0.249 -0.698 0.199 0.272 -0.149 -0.582 0.284 0.497
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